Neural network-based vehicle control in simulated environments using real-coded genetic algorithms : доклад, тезисы доклада

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-III 2024); Krasnoyarsk; Krasnoyarsk

Год издания: 2025

Идентификатор DOI: 10.1051/itmconf/20257205008

Аннотация: This research explores a method of optimizing neural networks for vehicle control in a simulation environment using a real-coded genetic algorithm (RCGA). The study focuses on applying RCGA in conjunction with multiple genetic operators, including simulated binary crossover (SBX), power mutation (PM), and tournament selection, to eПоказать полностьюvolve neural network weights and biases, enhancing control performance for simulated vehicles. By utilizing RCGA to adjust neural network parameters, the approach enables adaptive and efficient vehicle control. The experiments demonstrate that combining sensor data with neuroevolutionary optimization in a simulation leads to a highly reliable control system, achieving performance metrics comparable to human operators. These findings suggest that RCGA-based optimization methods can be effectively applied to complex dynamic systems in various technical fields.

Ссылки на полный текст

Издание

Журнал: ITM Web of Conferences

Номера страниц: 5008

Место издания: Krasnoyarsk

Персоны

  • Shabalin Denis (Siberian Federal University)
  • Stanovov Vladimir (Reshetnev Siberian State University of Science and Technology)

Вхождение в базы данных