Research on Co-Combustion of High-Calorific Biomass Obtained Using Gasification and Lignite for Sustainable Utilisation of Resources

Описание

Тип публикации: статья из журнала

Год издания: 2025

Идентификатор DOI: 10.3390/su17072845

Аннотация: <jats:p>As part of the transition to low-carbon energy and for the sustainable utilisation of resources, it is necessary to seek a replacement for solid fossil fuels, but unfortunately, it is impossible to completely abandon them for various reasons at the moment, so only partial replacement with new, high-calorific, biomass-based Показать полностьюfuels is possible. The purpose of this work is to determine the typical parameters of the co-combustion of carbonisate, coal and their mixtures, taking into account the synergetic effects influencing the combustion intensity of the mixture. Carbonisate was obtained in the process of the gasification of pinewood through the counter-blowing method at a temperature of 800–900 °C, while air was used as an oxidant. Basically, this method of gasification is used for coal in order to obtain high-calorific coke for the metallurgical industry. Also, in this study, for the first time, carbonisate was obtained from 50% pinewood and 50% lignite. The O/C and H/C ratios were determined for carbonisate. A technical and elemental analysis of the investigated fuels was carried out. A thermal analysis in oxidising medium was applied to determining the typical combustion parameters in the process of slow heating of the fuels under study. According to the results of this thermal analysis, typical heating parameters such as the ignition temperature, burnout temperature, maximum mass loss rate, combustion index, etc., were determined. It was noted that the calorific value of carbonised wood is two times higher than that of coal. The combustion index of carbonisates is 2.5–36% lower compared to that of coal. According to the results of the analysis of the interaction of the components among themselves (in the process of their joint combustion), the presence of synergetic interactions between the components was determined, which affected the change in the combustion intensity and heat release intensity. The results of this study may be useful for retrofitting coal-fired boilers to run on a mixture containing carbonisate and lignite. If carbonisate is produced from biomass, the resulting gas could be used as an energy fuel by burning it in a coal-fired boiler.</jats:p>

Ссылки на полный текст

Издание

Журнал: Sustainability

Выпуск журнала: Т. 17, 7

Номера страниц: 2845

ISSN журнала: 20711050

Персоны

  • Zhuikov Andrey (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)
  • Pyanykh Tatyana (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)
  • Grishina Irina (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)
  • Chicherin Stanislav (Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)
  • Zhuikova Yana (Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050, Russia)

Вхождение в базы данных